Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(3-Amino-1-benzofuran-2-yl)-2-mesitylethanone

The title compound, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$, features a benzofuran ring system coplanar with an amino substituent and linked to a mesityl group by an acetyl bridge. In the crystal structure, symmetry-related molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds involving one amino H atom and the O atom of the acetyl group to form infinite chains. The other amino H atom is involved in an intramolecular hydrogen bond with the acetyl O atom.

Comment

Benzofuran derivatives possess antimicrobial, bacteriostatic, bactericidal, fungistatic and fungicidal activities (Hassaneen et al., 2002). Moreover, benzofurans are building blocks for optical brighteners and are applied, for example, in combination with benzimidazoles as biphenyl end groups (Schmidt, 1999). Many of the natural benzofurans have physiological, pharmacological and toxic properties and, as a result, there is continuing interest in their chemical synthesis (Kappe et al., 1997).

Received 7 April 2004 Accepted 11 June 2004 Online 19 June 2004
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.132$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
Cengiz Arıcı, ${ }^{\text {a }}$. Dinçer Ülkü, ${ }^{\text {a }}$ Cumhur Kırilmıs, ${ }^{\text {b }}$ Murat Koca ${ }^{\text {b }}$ and Misir Ahmedzade ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Engineering Physics, Hacettepe University, Beytepe 06800, Ankara, Turkey, and
${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and
Science, Fırat University, 23169 Elazıg, Turkey
Correspondence e-mail: arici@hacettepe.edu.tr

The benzofuran ring system of the title compound, (2), is planar [with a maximum deviation from the plane of 0.101 (3) \AA for C7] and the acetyl group is slightly twisted about the $\mathrm{C} 1-\mathrm{C} 9$ bond, as seen from the torsion angles $\mathrm{O} 1-$ $\mathrm{C} 1-\mathrm{C} 9-\mathrm{O} 2\left[5.7(3)^{\circ}\right]$ and $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10$ [13.2 (3) ${ }^{\circ}$. Because of the amino group, the acetyl group is more twisted about the $\mathrm{C} 1-\mathrm{C} 9$ bond than in a similar compound (Arıcı et al., 2004). The benzofuran ring system is linked to the mesityl group by the acetyl group. The dihedral angle between the benzofuran ring system and the mesityl group is 79.91 (9) ${ }^{\circ}$.

The structure is stabilized by intramolecular and intermolecular hydrogen-bonding interactions. In the crystal structure, molecules related by the 2_{1} rotation axis are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds involving an amino H atom and the O atom of the acetyl group to form infinite chains along the b axis. The other amino H atom is involved in an intramolecular hydrogen bond with the acetyl O atom. Adjacent chains are interlinked through weak $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions involving the furan ring.

Experimental

A mixture of 1-chloro-3-mesitylacetone, (1) ($5 \mathrm{~g}, 23.73 \mathrm{mmol}$), 2hydroxybenzaldehyde $(2.85 \mathrm{~g}, 24 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.55 \mathrm{~g}$, 47.46 mmol) in absolute acetone was refluxed for 8 h . After cooling, compound (2) ($6.02 \mathrm{~g}, 89.3 \%$) was filtered off, washed with water, dried and recrystallized from tetrahydrofuran.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$
$M_{r}=293.35$
Monoclinic, $P 2_{1} / c$
$a=10.3779$ (12) \AA
$b=10.3151$ (11) \AA
$c=15.2789$ (13) \AA
$\beta=105.116$ (4) ${ }^{\circ}$
$V=1579.0(3) \AA^{3}$
$Z=4$
$D_{x}=1.234 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=2.4-24.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, colourless
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.046 \\
& \theta_{\max }=24.6^{\circ} \\
& h=-12 \rightarrow 0 \\
& k=-12 \rightarrow 0 \\
& l=-17 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \quad \text { intensity decay: } 0.7 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0639 P)^{2}\right. \\
& +1.0373 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.097 \text { (19) }
\end{aligned}
$$

Table 1
Selected bond distances ((\AA).

$\mathrm{C} 1-\mathrm{O} 1$	$1.408(4)$	$\mathrm{C} 4-\mathrm{O} 1$	$1.373(4)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.346(4)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2$	0.86	2.37	$2.927(4)$	122
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	2.43	$3.076(4)$	133

Symmetry code: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.
All H atoms were positioned geometrically ($\mathrm{N}-\mathrm{H}=0.86$ and $\mathrm{C}-$ $\mathrm{H}=0.93-0.97 \AA$) and refined as riding, with $U_{\text {eq }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON2000 (Spek, 2000); software used to prepare material for publication: SHELXL97.

Figure 1
A view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles with arbitrary radii.

Figure 2
A view of the packing in (2), showing the intermolecular and intramolecular interactions.

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 from the Scientific and Technical Research Council of Turkey.

References

Arıcı, C., Ülkü, D., Kırılmış, C., Koca, M. \& Ahmedzade, M. Acta Cryst. E60, m941-m942.
Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Hassaneen, H. M., Atta, S. M. S., Fawzy, N. M., Ahmed, F. A., Hegazi, A. G., Abdalla, F. A. \& Abd El Rahman, A. H. (2002). Arch. Pharm. Med. Chem. 6, 251-261.
Kappe, C., Murphree, S. \& Padwa, A. (1997). Tetrahedron, 53, 14179-14233.
Schmidt, E. (1999). In Ullmann's Ecyclopedia, 6th ed. (electronic release); Optical Brighteners. Weinheim: Wiley-VCH.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2000). PLATON. University of Utrecht, The Netherlands.

